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Consider the 3D compressible Euler system

ρ(∂tu + (u · ∇)u) +∇p(ρ) = ρf ,

∂tρ+∇ · (ρu) = 0,

u(0) = u0, ρ(0) = ρ0,

where u = (u1, u2, u3) and ρ > 0 are unknown velocity �eld and

density of the gas, p is the pressure and f is the external force, u0
and ρ0 are the initial conditions, x = (x1, x2, x3) ∈ T3 = R3/2πZ3.

Setting g = log ρ and h(s) = p′(es), the above system takes the

equivalent form

∂tu + (u · ∇)u + h(g)∇g = f ,

(∂t + u · ∇)g +∇ · u = 0,

u(0) = u0, g(0) = g0.
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Let

R : D(A) ⊂ H
k×Hk×L2([0,T ),Hk)→ C ([0,T ),Hk)×C ([0,T ),Hk)

(u0, g0, f )→ (u, g)

be the resolving operator of the system. Then the following

assertions hold.

(i) D(A) is open set.

(ii) The operator R is continuous.

(iii) The operator R is Lipschitz continuous from

H
k−1×Hk−1×L2([0,T ),Hk−1) to C ([0,T ),Hk−1)×C ([0,T ),Hk−1).
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We have the following blow-up criterion for the compressible Euler

system.

Proposition

Let (u, g) ∈ C ([0,T ),Hk)× C ([0,T ),Hk) be a solution of Euler

system. If for some r > 0

sup
t∈[0,T )

‖(u, g)(t)‖C r+1 <∞,

then there exists T1 > T such that (u, g) extends to a solution

de�ned on [0,T1).
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Let us consider the controlled system

∂tu + (u · ∇)u + h(g)∇g = f + η, (1)

(∂t + u · ∇)g +∇ · u = 0, (2)

u(0) = u0, g(0) = g0. (3)

De�nition

System (1), (2) with η ∈ X is said to be controllable at time

T > 0 if for any constants ε > 0, for any �nite dimensional space

F ⊂ H
k × Hk and for any functions (u0, g0), (u1, g1) ∈ Hk × Hk

satisfying
∫
eg0(x)dx =

∫
eg1(x)dx there is a control η ∈ X such

that

‖RT (u0, g0,η)− (u1, g1)‖Hk×Hk < ε,

PF (RT (u0, g0,η)) = PF (u1, g1).
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For any �nite-dimensional subspace E ⊂ H
k , we denote by F(E )

the largest vector space F ⊂ H
k such that for any η1 ∈ F there

are vectors η, ζ1, . . . , ζn ∈ E satisfying the relation

η1 = η −
n∑

i=1

(ζ i · ∇)ζ i . (4)

It follows from dimF(E ) <∞ and from the fact that if G1 and G2

satisfy (4), then so does G1 + G2 that F(E ) is well de�ned.
We de�ne En by the rule

E 0 = E , En = F(En−1) for n ≥ 1, E∞ =
∞⋃
n=1

En.
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Theorem

If E ⊂ H
k is a �nite-dimensional subspace such that E∞ is dense

in Hk , then system (1), (2) with η ∈ C∞([0,T ),E ) is controllable
at time T > 0.

Example

Let us introduce the functions

c im(x) = e i cos〈m, x〉, s im(x) = e i sin〈m, x〉, i = 1, 2, 3,

where m ∈ Z3 and {e i} is the standard basis in R3.

If

E = span{c im, s im, |m| ≤ 3},

then E∞ is dense in Hk .
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Agrachev-Sarychev method:

∂tu + B(u) = η, (5)

∂tu + B(u + ζ) = η. (6)

(i) Equation (5) is controllable with EN -valued controls for some

N ≥ 1.

(ii) Controllability of (5) with η ∈ En is equivalent to

controllability of (6) with η, ζ ∈ En.

(iii) Controllability of (5) with η ∈ En+1 is equivalent to

controllability of (6) with η, ζ ∈ En.
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We need to consider the control system

∂tu + ((u + ζ) · ∇)(u + ζ)) + h(g)∇g = f + η, (7)

(∂t + (u + ζ) · ∇)g +∇ · (u + ζ) = 0. (8)

For any (u0, g0) and (u1, g1) we �nd controls ζ,η such that the

solution of (7)-(8) relies (u0, g0) and (u1, g1). Combination of a

perturbative result and of the fact that E∞ is dense in Hk implies

controllability of (7)-(8) with EN -valued controls, N � 1.

To show (ii), without loss of generality, we can assume that

ζ(0) = ζ(T ) = 0. If (u, g) is the solution of (7)-(8), then

(u + ζ, g) = R(u0, g0,η − ∂tζ).

Thus, we have (i) and (ii).
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We show that the controllability of compressible Euler system with

η ∈ En+1 is equivalent to that of the system

∂tu + u · ∇u + h(g)∇g = f + η, (9)

(∂t + (u + ζ) · ∇)g +∇ · (u + ζ) = 0. (10)

with ζ,η ∈ En.

If ζn is a sequence of a smooth functions such that∫ t

0

ζn(s, x)ds → 0 as n→∞,

then for large n the solution of (10) is close to that of the equation

(∂t + u · ∇)g +∇ · u = 0.
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